公文高手,超级方便的公文写作神器! 立即了解


《有理数的乘除法》文字素材2

很小的时候,我们就知道小高斯算数的故事.当高斯还在读小学时,一天,老师要求大家计算1+2+3+……+100等于多少,这本是一道数字不小的加法运算题,当别的同学还在埋头苦算时,小高斯却早在一旁看着别人做,当老师走到他身边,准备批评他时,却一下子呆住了,原来小高斯已经在小石板上写出了答案:5050,而且这个答案是正确的。

那么小高斯是怎样如此迅速地将结果计算出来的呢。原来,他利用加法的交换律,先把1与100相加,得到101;2与99相加,也得到101;再一直加下去,共有50个101,所以结果为50×101=5050.这样小高斯就巧妙地利用运算的规律达到了迅速解题的目的.其实我们在平时的运算中也会遇到很多类似的问题,如下面的例子:

分析:乍一看无从下手,若是通分势必会产生数目很大的公分母,

已经抵消了,只有首尾两项相减.

1/3

数学运算是一个化繁为简的过程,在进行运算时,已经学过的运算律,可以简化计算过程.请大家试一试寻找下面两道题的运算规律是什么。

接下来,我们再回到小高斯算数的方法,提出下面的问题:例2计算101+102+103+…+200.

分析:这道题我们也可以采用高斯算数的方法,利用加法的交换律:101+200=301,102+199=301,……共有50个301,所以结果为50×301=15050.这种做法固然可取,但是否还有别的方法呢。解设a=l+2+…+200,b=l+2+…+100,则101+102+103+…+200=a-b=201×100-101×50

2/3

=15050.

可以看出,利用这种解法计算更加简捷,这其实就是以后在高中将要学到的数列的有关知识.

数学运算中有许许多多的规律,这些规律实际上都是由我们平时十分熟悉的运算律得来的,如加法的交换律和结合律,乘法的交换律等.对于数学学习中的众多规律,只要你多注意去寻找,一定会有意想不到的收获.最后再留下两道计算题,你能找出其运算的规律吗。(1)1+3+5+7+…+101

3/3

第二篇:《有理数的乘除法》文字素材1《有理数的乘法》典型例题

[例1]计算:

解:(1)(-88)×(-5)=440

(4)(-12.05)×(-0.7)=8.435关于多个有理数相乘时,应当注意:

(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(2)几个数相乘,有一个因数为0,积就为0.

(3)有理数乘法,仍符合乘法的交换律、结合律和分配律,某些题目,应用运算律,可以使运算简便.[例2]计算:

1/4

解:

=-9

[例3]计算:

2/4

=-6-20+21+22-(28-4)=-6-20+21+22-24=-50+43=-7

3/4

4/4

第三篇:有理数的乘除法2http://www.xiexiebang.com或http://www.xiexiebang.com

1.4.2有理数的除法

5分钟训练(预习类训练,可用于课前)1.填空:(1)乘积是1的两个数互为______;(2)有理数的除法法则,除以一个数等于乘以这个数的______;(3)两数相除,同号得______,异号得______,并把绝对值______,0除以任何一个不等于0的数都得______.思路解析:根据倒数定义及除法法则来判别.答案:(1)倒数(2)倒数(3)正负相除02.-51,


(未完,全文共6142字,当前显示1394字)

(请认真阅读下面的提示信息)


温馨提示

此文章为6点公文网原创,稍加修改便可使用。只有正式会员才能完整阅读,请理解!

会员不仅可以阅读完整文章,而且可以下载WORD版文件

已经注册:立即登录>>

尚未注册:立即注册>>

6点公文网 ,让我们一起6点下班!