银行业大数据解决方案
百分点银行大数据应用解决方案
银行大数据时代面临的挑战
1、银行离客户越来越远。在互联网交易链条中,银行所占比重越来越低,这使得银行越来越难以知道客户的消费行为;互联网金融的出现,在未来可能会超过以银行为中心的间接融资和以交易所为中心的直接融资模式,这会使得银行逐渐被边缘化。本质上是因为银行对于客户的了解程度,相对越来越弱。
2、客户不断流失难以挽回。市场竞争越来越激烈,银行意识到客户满意度的重要性,并将提升服务作为工作目标。在具体的操作过程中,银行关注产品特点,从服务质量、客户感知进行调查,试图找到解决办法。但是客户满意度却一直停留在原有水平。客户流失率也在不断上升。本质上是因为银行服务同质化。
3、客户维系成本不断攀升。随着互联网金融各类“宝宝”们冲击银行存款,抬升融资成本,银行越来越难以找到低价优质的资金,客户维系成本也不断攀升。银行客户维系陷入“理财收益高,客户多,收益下降,客户跑”的怪圈。本质上是由于银行无法对客户需求进行及时响应,只能通过价格这一唯一工具进行营销。
银行越来越意识到数据作为核心资产的地位,希望借助大数据的技术,聚合客户在银行内外的种种信息,深入洞察每个客户在银行内外的方方面面,以了解其兴趣、偏好、诉求,从而提供每一个客户个性化的产品与服务。www.xiexiebang.com
百分点银行大数据解决方案
百分点基于六年来专注于大数据的应用实践,为银行业提供端到端的整体解决方案,帮助银行实现海量多源异构数据的采集、整合,并运用大数据文本分析和数据挖掘技术,深入挖掘客户特征、需求,从而为银行向客户提供差异化服务和个性化产品、产品创新等提供数据支撑。整体解决方案如下:
银行业大数据应用
1、用户实时行为分析
互联网金融及第三方支付的出现,让银行用户流失严重,同时也更加不了解用户的需求。通过在银行官网、app上部署采集访问用户实时行为的代码,让银行可了解用户在网上的行为特征、需求,拉近银行和用户的距离,从而为更精细化的服务提供数据依据。实时行为包括:
用户分析:新增、活跃、沉默、流失、回流www.xiexiebang.com
渠道分析:渠道来源、渠道活跃、渠道流量质量客户留存分析:留存用户(率)事件和转化分析
客户体验度量:使用时长、地区分析、终端分析。。。访问原因探查:访问时间、访问频次、停留时长、访问路径
2、个性化服务和资讯推荐
根据客户使用银行产品和服务的历史信息及在银行官网/app上留下的实时信息,利用大数据文本分析和挖掘技术,分析客户的长期、短期偏好和需求,预测当下和潜在偏好和需求,为客户推荐个性化服务或资讯。
3、精准营销
面对银行存量客户交易不活跃,新客获取渠道少,渠道流量质量差等各类问题,百分点银行精准营销方案以用户出发,识别每个客户在银行内外的上网特征、金融产品消费偏好、金融渠道偏好、金融风险偏好、互联网消费偏好、互联网内容偏好、社交网络等信息,将用户特征匹配银行产品特征,从而将更合适的产品信息精准推送到合适的用户(群)。
新客的获取。基于采集的企业内外数据,在充分分析银行产品和服务特征的基础上,分析客户特征,从海量用户(互联网、app、邮箱等)中精确匹配到适合银行产品和服务的高价值、高净值客户,通过实时竞价广告(rtb)、edm(个性化邮件营销)、搜索营销(sem)等手段将产品和服务资讯推送给匹配的客户,帮助银行快速获取高价值客户。www.xiexiebang.com
(未完,全文共19463字,当前显示1428字)
(请认真阅读下面的提示信息)