公文高手,超级方便的公文写作神器! 立即了解


神经网络在信息安全的应用

目前信息安全问题已经得到社会的广泛关注,目前在信息安全管理中主要依靠现有的病毒库,采用病毒查杀的方法来保证系统安全。但是在实际上,这种病毒查杀方法并不具有高效、预先防御的功能,导致很多新型病毒出现后系统的安全保护出现滞后性。而pca技术的出现进一步强化信息安全管理能力,可以有效避免信息安全事件发生,具有先进性,值得关注。

1pca技术分析1.1pca技术概括

在当前的实时网络环境下,网络数据的流通数量越来越大,并表现出高度的数据维度特征,尤其是在业务的高峰时期,有效的识别数据特征并对异常数据进行隔离是保证信息安全的关键。在这种情况下,基于统计学中的pca技术(主成分分析方法)出现,并成为现阶段处理网络数据的常见方法,与传统技术相比,该技术能够进一步降低数据维度,并最大程度上保证了数据所具有的原始特征。在这种情况下,数据量减少且维度降低有助于提高异常数据的监测性能,这是传统技术所不具备的。

1.2主动成分分析方法的降维原理pca技术是一种可以将高纬度数据的不同数据映射成为少数几个能够代表元数据特征值的降维方法,在经过这种数据处理之后,这些少数的特征值可以反映出原有数据的特征属性,并且为了保证数据处理效果,这些处理之后的数据是没有关联性的。在pca的数学表达过程中,假设待处理的网络异常源数据具有n个维数特征值,表述为:x1、x2……xn,在经过pca处理之后,就可以将其转变为n个综合变量,通过这种计算方法可以确定不同综合指标因子y的维度数,并且从第一个变量开始一直到第n个变量数,且方差呈现出依次递减的特征。

2基于主成分分析法的bp神经网络信息安全管理分析


(未完,全文共2780字,当前显示695字)

(请认真阅读下面的提示信息)


温馨提示

此文章为6点公文网原创,稍加修改便可使用。只有正式会员才能完整阅读,请理解!

会员不仅可以阅读完整文章,而且可以下载WORD版文件

已经注册:立即登录>>

尚未注册:立即注册>>

6点公文网 ,让我们一起6点下班!