公文高手,超级方便的公文写作神器! 立即了解


统计学习与人工神经网络研究

摘要。统计学习方法和人工神经网络都是在数据分类任务中的使用的模型。本文从技术的角度上总结分析这些模型的相同点与不同点,提供对这些模型分类性能的客观分析。最后本文对如何更好地提升统计学习和人工神经网络的分类性能进行分析总结。

关键词:机器学习;神经网络;人工智能

1引言

预测模型在各种领域被用于分析和预测。预测模型都是从真实的数据样本中建立的,这些样本数据可以根据一系列规则进行预处理和转格式,普遍用于基于知识的专家系统,或者作为统计和机器学习的训练数据集。目前在机器学习中较受欢迎的是统计学习方法[1-3]和人工神经网路[4,5]。虽然这两种模型分别来自于统计学和计算机学,但同时也具有一定的相似性。在本文我们给出了统计学习方法和人工神经网络的在模式统计识别中共同点,并且说明为何神经网络可以看做是统计学习的总结。目前预测模型算法已经有不少现成的实现,既有免费的也有商业的软件可用于测试。通过测试发现所获取的结果主要依赖于三个因素:模型构建的数据集的质量、所调整的模型参数和用于计算模型处理结果的评价标准。在总结中,我们指出判断这些预测模型测试结果的好坏所影响的因素。

2统计学习中的典型算法


(未完,全文共2304字,当前显示506字)

(请认真阅读下面的提示信息)


温馨提示

此文章为6点公文网原创,稍加修改便可使用。只有正式会员才能完整阅读,请理解!

会员不仅可以阅读完整文章,而且可以下载WORD版文件

已经注册:立即登录>>

尚未注册:立即注册>>

6点公文网 ,让我们一起6点下班!