《算法导论》学习总结——快速排序
算法设计与分析
学
习
报
告
第一部分学习内容归纳
“计算机算法是以一步接一步的方式来详细描述计算机如何将输入转化为所要求的输出的过程,或者说,算法是对计算机上执行的计算过程的具体描述。”(参考文献:百度百科)《算法设计与分析》是一门面向设计,在计算机科学中处于核心地位的课程。这门课程主要讲授了在计算机应用中经常遇到的问题和求解的方法,分治法、动态规划法、随机算法等设计算法的基本原理、技巧和算法复杂性的分析,以及计算理论简介。
第一部分“概论和数学准备”在简单了解了算法的基本概念和复杂性、研究步骤等几个重要知识点后,着重学习了算法的数学基础,包括生成函数、差方方程的求解等,主要适用于求解算法的时间复杂性。
“任何可以用计算机求解的问题所需要的计算时间都与其规模有关:问题的规模越小,解题所需的计算时间往往也越短,从而也就比较容易处理。”(参考文献:《计算机算法设计与分析(第3版)》)而第二部分介绍的算法常用技术之首——分治法就运用了这样的思想。分治法的要领在于divide(子问题的划分)-conquer(子问题的求解)-combine(子问题解的组合)。由于子问题和原问题是同类的,递归的思想在分治法中显得尤其重要,它们经常同时运用在算法设计中。这部分内容从select(求第k小元)算法,寻找最近点对算法和快速傅立叶变换fft等实际应用中深化对分治法思想的理解,同时也强调了平衡思想的重要性。
第三部分“动态规划”与分治法类似,同样是把问题层层分解成规模越来越小的同类型的子问题。但与分治法不同的是,分治法中的子问题通常是相互独立的,而动态规划法中的子问题很多都是重复的,因此通常采用递推的方法以避免重复计算。然而,也不是所有的情况下都采用递推法,当有大量的子问题无需求解时,更好的方式是采用动态规划法的变形——备忘录方法。通常需要用到动态规划法求解的问题都具有子问题的高度重复性和最优子结构性质两大特征,这也是我们分析问题和设计算法时的关键点。最长公共子序列lcs问题和最优二分搜索树就是从动态规划法的两个主要特征角度分析问题,进而设计出相应的解决算法的。而这部分内容中的另一个问题——流水作业调度,则告诉我们采用动态规划时偶尔也得不到高效的算法,我们要学会将已有的知识灵活运用,适当加工。
(未完,全文共3396字,当前显示961字)
(请认真阅读下面的提示信息)